Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst.

نویسندگان

  • Yun-Pei Zhu
  • Tie-Zhen Ren
  • Zhong-Yong Yuan
چکیده

Organic-inorganic hybrid of cobalt phosphonate hollow nanostructured spheres were prepared in a water-ethanol system through a mild hydrothermal process in the absence of any templates using diethylenetriamine penta(methylene phosphonic acid) as bridging molecule. SEM, TEM and N2 sorption characterization confirmed a hollow spherical micromorphology with well-defined porosity. The structure and chemical states of the hybrid materials were investigated by FT-IR, XPS and thermogravimetric analysis, revealing the homogeneous integrity of inorganic and organic units inside the network. As a heterogeneous catalyst, hollow cobalt phosphonate material exhibited considerable catalytic oxidizing decomposition of methylene blue with sulfate radicals as compared to cobalt phosphonate nanoparticles synthesized in single water system, which could be attributed to enhanced mass transfer and high surface area for the hollow material. Some operational parameters, including pH and reaction temperature, were found to influence the oxidation process. The present results suggest that cobalt phosphonate material can perform as an efficient heterogeneous catalyst for the degradation of organic contaminants, providing insights into the rational design and development of alternative catalysts for wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Removal of Diclofenac from Pharmaceutical Wastewater Using Impregnated Zeolite Catalyst in Heterogeneous Fenton Process

In this study, we report removal of Diclofenac (DCF) through heterogeneous Fenton process using Fe-ZSM-5 catalyst. The parent catalyst was prepared by hydrothermal technique. Fe species were introduced by wet impregnation. Characterization of the catalysts was carried out using XRD, FT-IR, FE-SEM, N2 adsorption-desorption, NH3-TPD, and acidimetric-alkalimetric titration. The bimetallic catalyst...

متن کامل

Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems.

A hybrid system with a coordinative interaction between a cobalt complex of a N2S2-tetradentate ligand and CdTe quantum dots displayed a high activity (initial TOF 850 h(-1)) and improved stability (TON 1.44 × 10(4) based on catalyst over 30 h) for the photochemical H2 generation from water, with a quantum efficiency of 5.32% at 400 nm.

متن کامل

Preparation of Kissiris/TiO2/Fe3O4/GOx Biocatalyst: Feasibility study of MG decolorization

Titanium dioxide (TiO2) and Fe3O4 magnetite particles were coated on spherical Kissirises; glucose oxidase (GOx) enzyme was immobilized on Kissiris/Fe3O4/TiO2 by physical adsorption. This catalyst was analyzed by a scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray (EDX) measurements. The performance of the prepared biocatalyst in the...

متن کامل

Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high o...

متن کامل

A novel Heck reaction catalyzed by Co hollow nanospheres in ligand-free condition.

Heck reaction catalyzed by cobalt hollow nanospheres has been developed; the coupling of alkenes with aryl iodide or aryl bromide in the presence of potassium carbonate provides the corresponding products with moderate to good yields, which reveals obvious advantages such as low-cost catalyst, ligand-free condition, the recyclability of the catalyst and simple experimental operation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 19  شماره 

صفحات  -

تاریخ انتشار 2014